If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25c^2-5c-12=0
a = 25; b = -5; c = -12;
Δ = b2-4ac
Δ = -52-4·25·(-12)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-35}{2*25}=\frac{-30}{50} =-3/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+35}{2*25}=\frac{40}{50} =4/5 $
| -2.5x=4.2x+3 | | 20+12x=240 | | 3(3x-7)-2=3(x-2)-5 | | -n2+10n-9=0 | | 54+x+x-2=180 | | 20+10x=200 | | 4x-3x-24=-3 | | 11x-19=10x+4 | | 2x-14=3x+5x+7 | | -5m+14+6m=-3 | | 42+2x=84 | | 26(x+17)=988 | | 15x-27=27x-7 | | (2x)(-3)+8=-9x+38 | | 20+6x=120 | | 6y-3y+6=5y=4 | | X/2+x/3=5x+2/6 | | 20+1x=20 | | 8d+6=5d=39 | | 406=14(f+18) | | 4x+5=-3+54 | | 5=-7+x/3 | | -14x-19=-117 | | (2x-15)+(3x-10)=180 | | 864=12(k+51) | | P2-p-2=0 | | X*(2x+5)=215 | | 7(x•x)-21x=0 | | 18=b-(7b) | | 4(2x+8)=16+3(x-6) | | 12(x+35)=516 | | 10(0.4+0.5)=4y |